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NATIONAL AERONAUTICS AND SPACE ADMINISTRATION 

TECHNICAL NOTE D-24 

CALCLTLATION OF SUPERSONIC FLOW PAST BODIES SUPPORTING 

SHOCK WAVES SHAPED LIKE ELLIPTIC CONES 

By Benjamin R. Briggs 

Numerical solutions are presented f o r  supersonic perfect-gas flow 
past bodies which support shock waves shaped like elliptic cones. The 
full inviscid equations of motion are applied. 
solution is used, wherein the conditions at the shock wave are prescribed 
and the results are in the form of body shapes and surface pressure 
distributions. 
and with results for circular cones. 

The inverse method of 

Comparisons are made with existing approximate theories 

INTRODUCTION 

In the past most of the attempts to obtain usable solutions for two- 
or three-dimensional supersonic flow problems have been of an approximate 
nature. Through the use of high-speed electronic computers, however, 
solutions have been obtained using the f u l l  inviscid equations of motion. 
An example is the solution of the problem of a blunt body in a supersonic 
sirem by m m c r l c d  ~ e e x c .  (see refs. 1 and 2). 

The numerical. techique eqloyed in references 1 and 2 was to 
prescribe the shape of the detached shock wave, and then to locate the 
body by integrating inwardly and finding where a stream function vanished. 
It was suggested in reference 2 that the same general numerical methods, 
along with the use of a pair of stream functions, might be employed in 
solving three-dimensional flow problems. 
functions in three-dimensional flows is discussed in reference 3. 

The use of two (or more) stream 

Another problem which has been solved numerically using the full 
inviscid equations of motion is the supersonic flow past circular cones 
at zero angle of attack (see ref. 4 ) .  Various approximate methods have 
been advanced for finding the flow properties of slightly noncircular 
cones or circular cones at small angle of attack (see, e.g., refs. 3 
and 6j. 

In supersonic flow an entropy layer exists over,noncircular or yawed 
conical bodies. The value of entropy must be constant on the body. These 
concepts have Seen utilized in reference 7 to obtain body shape from a 



numerical study of the entropy in the flow field behind a yawed circular- 
cone shock. In addition to the entropy layer, singularities in the * 
entropy appear on the conical bodies when the conical body is noncircular 
or yawed (see refs. 6 and 8). 

In the present paper supersonic conical flow past bodies that support 
shock waves shaped like elliptic cones is studied numerically. The tech- 
nique of prescribing the shock-wave shape (refs. 1, 2, and 7) is employed. 
The f u l l  inviscid equations of motion are used, and the problem is formu- 
lated in terms of two stream functions. 

The author is indebted to Dr. Milton D. Van Dyke who originally posed 
the problem reported here and suggested how to use two stream functions in 
the analysis. 

SYMBOLS 

semimajor and semiminor axes of elliptic cross section of 
coordinate surfaces of constant 8 (eqs. (2b), (3)) 

semimajor and semiminor axes of elliptic cross section of 
coordinate surfaces of constant $ (eqs. (2c), (3)) 

functions defined in equations (7) 

constants in equations (llb) which specify stream surfaces 

stream functions of a three-dimensional flow 

specializations of f and g for the present conical-flow 
problem 

coefficients in the metric of the sphero-conal coordinate system 

constants in the sphero-conal coordinate transformation 

Mach number 

function defined in equation (33) 

pressure referred to pmUm 

sphero-conal coordinates 

2 

. 

. 
velocities components in the sphero-conal coordinate system 
referred to Urn 
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v e l o c i t i e s  i n  the  d i rec t ions  

free-stream ve loc i ty  

vector  having components u,v,w 

Cartesian coordinates 

adiabat ic  exponent 

coordinate surface t h a t  coincides with the  shock wave 

increments of 

x,y7z, respect ively 

8 and @ which def ine the  mesh width i n  t h e  
numerical calculat ions 

densi ty  referred t o  free-stream value 

Subscripts 

condition on body surface 

nth extrapolation 

normal component (eq. (23))  

conditions on the  shock wave 

d i f f e ren t i a t ion  with respect t o  varia’uies 

x ,y , z  components of Mach number (eq. ( 2 3 ) )  

r,G, a 2  @ 

Supers crip t s 

n th  extrapolation 

d i f f e ren t i a t ion  with respect t o  the  var iable  G, encountered 
i n  the  components of grad(pYS) i n  the  d i rec t ions  r,8,@ 

EXAMINATION OF THE PROBLEM 

The technique used here i s  similar t o  t h a t  employed i n  references 1 
and 2.  
shape, and then the body i s  found by integrat ing the  eq-mtions of notion 
inwardly toward the  body. 

I n i t i a l  flow data  a r e  calculated a t  a shock wave of prescribed 

In  two-dimensional or axisymmetric flow problems, 
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a function which represents the integral of the differential equation of 
the streamlines exists. This function is the well-known stream function. 
In the present three-dimensional analysis an important feature is the use 
of two such functions. 
reference 3. These two functions are constant on streamlines, and the 
intersection of surfaces represented by the functions are the streamlines. 
It is natural, then, to think of them as stream functions for the three- 
dimensional problem. The body is located where one of these two functions 
vanishes. 

. 
A discussion of this generalization is given in 

Results of the calculations are body shape and surface pressure. 

Following an exposition of the coordinate system, equations of motion, 
and initial conditions, a description of the numerical integration process 
is given. Several specific calculations are then discussed, including a 
comparison with circular-cone computations given in reference 4, and a 
comparison with the theory of reference 5 for slightly noncircular cones. 
The effect of varying the adiabatic exponent y 
Mach number is shown, and the limiting case of y nearly one is compared 
with simple Newtonian theory. 

in a flow at very high 

The report is concluded with a discussion of the results and a mention 
of possible avenues of extension of the present method to include angles 
of attack or sideslip, and a closer study of the vorticity layer and 
entropy singularities which are known (see refs. 6 and 8) to exist on the 
surface of noncircular conical bodies or cones at angles of attack or 
side s l i p .  

. 

THE SPHERO-CONAL COORDINATE SYSTEM 

It is an essential requirement in the numerical method to be applied 
that the shock wave be a coordinate surface and in this case an elliptic 
cone. An orthogonal coordinate system r,@,ej which meets this require- 
ment is given in reference 9. 
x,y,z is 

This transformation from a Cartesian system 

I x = r cos e 4- 
y = r sin e sin e j  

z = r cos *jl-k2cos2B 

The coordinate system represented by equation (1) is called the 
sphero-conal system. 
reduces to spherical polar coordinates about the x axis, and for k2 = 0 
and k'2 = 1 it reduces to a spherical polar set about the 

Observe that for k2 = 1 and kV2 = 0 this system 

z axis. 
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The coordinate surfaces of the system represented by equation (1) 
a r e  spheres and two s e t s  o f  e l l i p t i c  cones, given by the  following three 
equations. 

( 2 4  x2 + y2 + z2 = r* , f o r  f ixed r = ro 

= 0 , f o r  f ixed 8 = 8 0 
x2---  y2 22 

tan2@ l-k2cos28 

for f ixed $ = go y2 + - - 22 = 0 ,  X 2  

l-k"cos2@ 
kt2cos2@ 

Portions of t he  two sets of cones, equations (2b) and ( 2 c ) ,  a r e  shown i n  
sketches (a) and (b ) .  

Sketch (a) .- Constant 8 Sketch ( b ) . -  Constant $ 

Points  a r e  defined a t  intersect ions of the  cones and the  spheres 
r = constant.  

The semiminor and semimajor axes of the  e l l i p t i c  cross sect ions of 
the  cones are shown i n  these sketches. 
k t 2 ,  eo, and $do, these may be writ ten 

In terms of the constants k2, 
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k2 eo s2 8, 

b = tan eo 

bl = tan go 
For the problem at hand it will be assumed that the prescribed shock 

wave is a cone of the family represented by equation (2b) (see sketch (a)). 
The free-stream flow will be in the direction of the positive x axis. 

v 

( 3 )  

The shock-wave geometry is fixed by giving constant values to 
The constants k2 and kV2 

8 and b/a. 
can then be calculated from the relations 

(4) 
kf2 = 1 - k2 

In the derivation of the equations of motion in terms of the 
orthogonal sphero-conal coordinates, the functions 
coefficients in the metric, are needed. The metric is given by 

h:,h$,hz, which are 

ds2 = hzdr2 + h,'de" + h$d@2 
for orthogonal systems, and in the present case 

h: = 1 

h$ = r2 k2sin28 + kJ2sin2@ 
1 - k2cos2@ 

hz = r 2 k2sin28 + kf2sin2@ 
1 - kf2cos2@ 

( 5 )  

7 

In the transformation of the equations of motion ,-it0 the sphero-cona 
coordinates considerable simplification results when the following auxil- 
iary functions are introduced: 
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A2 = 1 - k2cos28 
k2sin28 + kI2sin2# 

1 - k'2cos2@ 

k2sin28 t kt2sin2# 
B2 = 

k2sin 8 cos 8 C =  
k2 s in2 8 t k! s in2@ 

kf2s in  fl cos @ 
k2 s in2 8 t k' 2s in2@ 

D =  

- -  dB - -BC dA - C(1-A2) - -  
d e  A de 

- -  - -AD 
a# 

Equation (6) can now be wri t ten i n  simpler form by use of re la -  
t i o n  (7); t h a t  is ,  

VELOCITIES IN THE SPKERO-CONAL SYSTEM 

Velocity components u,v,w i n  U I L . 4  

sphero-conal coordinates a re  defined i n  
the  following way. The component u i s  
i n  the  d i rec t ion  of the coordinate r. 
The ve loc i t i e s  v and w a re  components 
along curves of constant 
respectively,  on a spherical. surface 
given by constant r. Sketch ( c )  
i l l u s t r a t e s  curves of constant @ 
and 8, and t h e  ve loc i ty  components v 
and w a re  shown. It must be borne i n  
mind t h a t  t he  sketch i s  a projected 
view of the  spherical  surface onto the 
y-z plane, and t h a t  the  ve loc i ty  
components v and w do not l i e  i n  
the  y-z plane, but on a spherical  
surf ace. 

@ and 8, 

Sketch ( e )  
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The relat ionship between the  ve loc i t i e s  u,v,w and the veloc i ty  
components ul,vl,wl i n  the Cartesian coordinate system i s  given by 
the  equations: 

Id cos cos 0 

v1 = ( s i n  B s i n  @)u  + 

w 1  = (+z&x3 cos @) u + ( k2sin 0 cos 6' cos 

dk2 s in2 B+k ' s in2@ 

(l-k2COS2B) (1-k' COS'@) sin @ [ L z z r  1 
THE EQUATIONS OF MOTION 

General Remarks 

* 

The d i f f e ren t i a l  equations which describe the  flow of an idea l  perfect  
compressible f l u i d  are, i n  vector form, 

div(p7) = o (cont inui ty)  ( 9 4  

p(?-grad)T + grad p = 0 (momentum) (9b) 

3-grad(p/pY) = 0 (energy) ( 9 4  
-+ 

Here V i s  the veloci ty  made dimensionless with respect t o  i t s  free-stream 
value Urn. The density p has been made dimensionless with reference t o  
i t s  free-stream value p,, and pressure p with respect t o  the  quant i ty  

2 c 
PJm 
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The Equations of Motion in the Sphero-Conal System 

When equations (9) are transformed into the sphero-conal coordinate 
system, with the added assumption of conical flow, the results are 

Av a, + Bw a, - (v'+$) = 0 
d e  der 

Here u, v, and w are velocities in the sphero-conal system, as discussed 
previously, and A, B, C, and D are defined in equation (7). 

Equations (10) reduce to those for conical flow in ordinary sphei-ical 
polar coordinates if values of 1 and 0 are taken for k2 and kr2, respec- 
tively (see, e.g., ref. 6). 
is mde, t.hen the velocity w vanishes and none of the remaining flow 
quantities vary with 
ence 4 in the direct circular-cone problem. 

If the further stipulation ul" axis>iimieti-lc flax 

a, and equations (10) reduce to those used in refer- 

The Equations of Motion Written in Terms 
of Two Stream Functions 

It is not convenient to use equations (10) in the numerical computa- 
tions, as there is no way to infer the body shape from values of the 
velocities u, v, and w, and p and p in the flow field. In reference 3, 
three-deminsional flows are described by a method utilizing two functions 
which are integrals of the differential equations of the streamlines. One 
of these functions can be made to vanish at a solid boundary, such as the 
conical body of this analysis. 
function of two-dimensional or axisymmetric flows. The theory of refer- 
ence 3 will be outlined here briefly. 

This is a generalization of the stream 
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Let ul,vl,wl be velocity components in the direction of the 
Cartesian coordinates x,y,z, respectively. 
given by the equations 

d X = Q = a z  
u1 v1 w1 

Now, all of the integrals of these equations 
relations 

I fl(X,Y,d = c1 

gl(x,Y,z) = c2 

Stream surfaces are represented by these two 

Then the streamlines are 

(lla) 

are contained in the two 

(lib) 

equations for fixed values 
of the constants c1 and c2. The intersections of the stream surfaces 
fl and gl are streamlines, and it is clear then that fl and gl are 
constant on streamlines. The functions fl and gl are referred to as 
the stream 
of the two 

The energy 
is related 
be written 

functions for a three-dimensional flow. 
stream functions are represented by the vector product 

The velocities in terms 

p? = (grad fl) X (grad gl) (12 1 

equation then takes the simple f o r m  S 
to the entropy of the flow field. The momentum equations can 
as 

p/py = S(fl,gl) where 

and the unknowns are now fl, gl, and p.  

The velocities u, v, and w can be found in terms of f and g if 
equation (12) is transformed 
Thus, 

u =  

v =  

w =  

into the sphero-conal coordinate system. 

Here f and g are understood to be functions of the coordinates r,G,@, 
and subscripts r, 8, and fl, indicate partial differentiation with respect 
to the variables Observe that the assumption 
of conical flow has not been made in equation (14). 

0 

r, 8, and @, respectively. 

“he theory summarized in the foregoing paragraphs will now be applied 
to the problem at hand. For conical flow 7, p, and S are not functions 
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of the coordinate r .  Thus the product fg must be homogeneous of order 
2 in r (see eqs. (14)). In order that f will reduce to Stokes’ stream 
function in the axisymmetric case, and a lso  that the body be described 
by f = 0, it is convenient to let f be homogeneous of order 2 and g 
of  order 0 in r .  Thus, for conical flow, the transformation 

Equation (14) can now be written in terms of F and G. 

The components of grad [ pyS( G) ] are 

0 

in the r, 8 ,  and @ directions. The quantity (8.grad)T in equation (13) 
can be written in terms of the component velocities u,v,w, as was done 
in the equations of motion, equations (loa), (lob), and (1Oc) .  
use of equations (17) and (18) the equations of motion become: 

8 momentum: 

Then, by 

[ 7 py+lS- (2BFG@) ] (?) 
= (2BF)2(G&p/@-Gp/G@@) - (p7+’S) (%)e + 2 B 2 E @ ( F @ G e - F & @ )  + 

( 2 F ) 2 G ~  (I)-. T)p/ + ( 2 F ) 2 C ( B 2 G p A 2 G $ )  
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r momentum: 

(ABG@'Fee = 

The shock 

(F@Ge-FeG@) (2A2C-C+A' %)@ P - A2 (2B2D-D-B2 P ) e ]  

(21) * 
THE INITIAL CONDITIONS 

wave i s  taken t o  be a.n e l l i p t i c  cone of the form described 
by equation (2b),  and the fixed value of 
equation of  t h i s  conical surface i s  

r(x,y,z) = x2 - - Y2 
b2 

The component of free-stream Mach number 
i s ,  i n  general, 

8 w i l l  be designated 8,. The 

Z2 

a2 
- - = o  

M, normal t o  the  shock wave 

where Mx,My,MZ a re  the components of Mach number i n  the  x:, y, and z 
directions,  respectively.  
My = Mz = 0 are used equation (23) becomes 

When equation (22) and the  condition t h a t  

LY 4 k2 s in2 8,+k 2s in2@ 
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The pressure, density, and velocity behind the shock wave are 

2 7 6  - (7-1) 

(Y+l)Y% 
P =  

(see, e.g., ref. 10, eqs. (93), (94), and (96)). The velocities u and w 
are tangent to the shock, so they undergo no change through the shock. 
These velocities are 

u = COS eo &rTGq (25d) 

kt2cos eosin 6 cos @ 
w =  

Jk2 s in2 B,+k s in2@ 

There is still some freedom left in the choice of the form of the 
stream functions F and G. If it is s;?ecified that F be independent 
of @ at the shock wave the result is that it is a constant there. 
value of this constant is specified, now, by requiring that G reduce 
to @ in the axisymmetric case. Using equations (24), (Db), ( 3 c ) ,  
and (7) in equation (1p) gives 

The 

(l-k2cos2f30) (l-kt2cos2@) = -sin eo J 
Jk2 s in2 Bo+kl s in2@ 

Solving for G@ results in the equation 

sin O&-k2sin28, 
G@ = 2F 

If F is chosen to be 
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a t  the  shock, then an integrat ion of  equation (2611) leads t o  

G = #  

a t  8 = 8,. I n  a similar manner equations 

PD 
A2tan 8, 

Go = 

(17a) and (17~) yield 

a t  the  shock wave. 

Equations for S(G) and S'/S are needed, a lso.  The required 
relat ions a re  

S' = -4y(y-l)k2k12cos280(N2-1)2sin G cos G 

[2yN2-(y-1) ] [2+(y-1)N2] (k2sin280+k'2sin2G) (l-k'2cos2G) 
- 

where 

I$$sin280(l-k'2cos2G) (1-k2cos280) 

k2sin2eo + kt2sin2G 
$(G) = (33) 

THE NUMERICAL TECHNIQUE 

The numerical problem i s  defined by equations (19) through (21) ,  
(2%) , and (27) through (33).  
the  following items. 

For a given case, values are specif ied f o r  

7 

$ 1  

Shock-wave geometry 

Bee-stream Mach number 

Adiabatic exponent 

Mesh s i ze  



In pract ice ,  20 points  are picked i n  the region 
shock wave. The s t a r t i ng  value o f  0 i s  taken as 2.25', and i s  
4 . 5 O .  Thus, the  values o f  fl at which i n i t i a l  da ta  a re  calculated 
are 2 . 2 5 O ,  6.75O, . . . , 87.75'. The value of DB i s  chosen so t h a t  a t  
l e a s t  8 o r  10 increments are taken t o  get t o  the  body. 

0 < pr < ~ ( / 2  on the  

These computations have been programed f o r  an ElectroData 205 
Electronic Data Processing System having the  automatic f loa t ing  point 
feature .  The program i s  arranged according t o  the  following out l ine .  

Step 1.- Compute i n i t i a l  values of p, F, G, Fe, and Ge f o r  t he  

QPi 20 prescribed values of @ at  the shock. Compute der ivat ives  
Fpr, Gpr, F@j, G$pr, Fqj, and G@ numerically. Compute S ( G ) ,  S 1 / S ,  
p8, Gee, and 
Compute pressure using the re la t ion  p = pyS. 
known now a t  the  shock, are read out of the  computer. 

,go from equations (31) through (33) and (19) through (21).  
The per t inent  flow data,  

Step 2 .- Extrapolate p, Fe, and Go, known here at 0 = en, t o  the  
next value of  8, where en+l = en - a, using t h e  formulas 

Step 3.- Extrapolate F and G t o  the next smaller value o f  8, 
namely On+=, using the  formulas 

J 
(n+d Note t h a t  'F8 (n+l) and Go , found i n  s tep  2, a re  used i n  s tep  3. The 

value of i s  now computed by use of the  r e l a t ion  = 8, - LO.  

Step 4.- Compute the  derivatives 
and G$ numerically. Compute S ( G ) ,  
equations (31) through (33) and (19) through f21). Pressure p i s  
now found from the  re la t ion  
value of 8, per t inent  flow-field data f o r  the prescribed 20 values 
of  6 are read out of the  computer. 

p = pyS. A t  t h i s  point,  f o r  t he  present 

St.ep 3 . -  If any values of F have become negative for t he  
current  set of data,  f o r  which 8 = then the  previously 
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calculated s e t  a t  8 = 8, i s  recal led and the  increment i n  8 t o  
t he  body from 6, i s  calculated for each value o f  # by use of 
t he  relat ion 

and the coordinates y and z of the  body cross section a re  found 
f o r  x = 1 from the  equations 

1 s i n  # s i n  t+, 
Yb = 

cos $&-k2cos2$ 
Zh = 

where @'b = 6, - %. The pressure p i s  extrapolated t o  the  body 
by use o f  t he  formula 

where 

( 3 7 )  

The body coordinates and pb 
case i s  finished. 

a re  now read out of t he  computer and the  

If, on the other hand, a l l  values of F a re  s t i l l  pos i t ive  here, 
at  8 = steps 2 through 4 are  repeated. The r epe t i t i on  i s  
carried out u n t i l  F has changed sign, a t  which t i m e  the  extrapola- 
t i o n  t o  the  body, as outlined i n  the  foregoing paragraph, i s  car r ied  
out.  

PRESENTATION OF RES'JLTS 

I l l u s t r a t i v e  Examples c 

For i l l u s t r a t i v e  purposes a case w a s  studied f o r  which the  shock wave 6 

was define? by 
M = 6 and 7 = 1.4. 

eo = 30° and b/a = 0.6. The free-stream conditions were 
In order t o  assess  the  e f fec t  of t he  magnitude o f  the  



increment b3 on the  calculations,  t h i s  example w a s  computed f o r  several  
values of b3. The resu l t ing  body shapes (p lo t ted  i n  the  x = 1 plane) 
and surface pressure d is t r ibu t ions  are shown i n  f igures  1 and 2, respec- 
t i ve ly .  Note t h a t  r e s u l t s  are shown only f o r  one-quarter of the  body 
cross section. Pressures are  plotted against  t he  coordinate @ (see 
eqs. (1)). From equations (1) it i s  seen t h a t  where 
y = 0, and where # = 90" i s  where 
i s  more regular,  pa r t i cu la r ly  i n  the middle portion, f o r  small values 
of M .  The surface pressure d is t r ibu t ions  f o r  t he  two smallest incre- 
ments are indistinguishable from one another. To show i n  a somewhat more 
quant i ta t ive way t h a t  the calculations are s tab le  and convergent, the 
body coordinate % has been plotted against  A3 f o r  several. f ixed 
values of It i s  evident t h a t  by taking smaller and 
smaller increments some f i n a l  body shape i s  approached. 

# = 0' on the  body 
z = 0 .  Quali ta t ively,  the body shape 

# (see f i g .  3 ) .  

There i s  no reason t o  expect the body shape t o  be e l l i p t i c ,  i n  
general .  In  the  case under discussion, the  body cross sect ion i s  coqa red  
with an e l l i p se ,  namely the  one through the  points  where 
on the  body (see f i g .  4 ) .  
middle portion, a not wholly unexpected r e s u l t .  Note t h a t  t h i s  i s  not 
a coordinate e l l i p s e .  

y = 0 and z = 0 
The body is f l a t t e r  than t h i s  e l l i p s e  i n  the  

Another s e r i e s  of calculations was carr ied out using the same shock- 
wave geometry as i n  the  previously discussed examples. The value of y 
w a s  t h e  same, a l so ,  but several  values of M, were chosen t o  study the  
e f f ec t  of Mach number var ia t ion  on body shape and surface pressure.  The 
r e s u l t s  a re  as might have been expected, namely, t h a t  as Mach number i s  
increased the distance between the body and shock wave decreases u n t i l  
eventually the  two a t t a i n  a f ixed distance apar t .  The r e s u l t s  of  t.hese 
computations a re  shown i n  f igures  3 and 6. 

Another s e r i e s  of bodies was computed where the shock wave i s  given 
by 8, = 30°, b/a = 0.6, as before, and f o r  very la rge  bkch number. 
Several d i f f e ren t  values of the  adiabatic constant ^J were chosen &-id 
the  e f f ec t  of varying t h i s  constant on body shape and surface pressure 
w a s  observed (see f i g s .  7 and 8 ) .  
1.6667 2 y L1.001. 
decreases u n t i l  a t  y = 1.001 body and shock a re  sensibly coincident. 
The pressure d i s t r ibu t ion  calculated by simple Newtonian theory f o r  a 
body having the  same dimensions as the shock wave of t h i s  series i s  shown 
i n  f igure  8. 
here f o r  7 = 1.001. The difference between the  two curves i s  undoubtedly 
due t o  cent r i fuga l  e f f ec t s  which cannot be calculated with the  Newtonian 
theory, but which a re  included i n  the so-called Newtonian plus  centr i fugal  
theory. The l a t t e r  theory i s  arrived a t  by taking y equal t o  one along 
with i n f i n i t e  Mach number. 

Values were taken i n  the  range 
Note t h a t  the distance between shock wave and body 

It i s  t o  be compared with the  pressure on the body found 
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Comparison With an Approximate Theory 

I n  reference 5 an approximate numerical method i s  presented f o r  
computing supersonic flow pas t  cones without axial symmetry. 
i s  most accurate when the  bodies a re  near ly  c i rcu lar  cones, and has the  
disadvantage t h a t  it can only be applied with ease t o  cases f o r  which 
reference 3 presents tabulated coef f ic ien ts .  

This method 

To compare the  present method with tha t  of reference 5 a tabulated 
case was found for  which the  shock wave w a s  very near ly  an e l l i p t i c  cone. 
The body i s  a simple perturbation of a 25' c i rcu lar  cone i n  a flow where 
M = 3.926, y = 1.405. 
given by A s  the s t a r t i n g  condition, the  
method of reference 5 w a s  applied t o  the body produced by t h i s  calcula- 
t ion ,  and the shock-wave posi t ion and surface pressures were computed. 
The body was  c losely approximated by the  expression 

The i n i t i a l  shock which produced t h i s  body w a s  
8, = 30.990°, b/a = 0.94337. 

@t, = 25 + 1.097 cos 2# , degrees (40) 

and the shock wave i s  given by the  expression 

8 = 31.737 + 0.747 cos 2$ , degrees 

The surface pressure calculated by the  method of reference 5 i s  

pb = 0.2396 + 0.0185 COS 2@ (42) 

A simple analysis  of the surface pressure as calculated by the  method of 
the  present paper shows t h a t  it can be put i n  the  form 

pb = 0.2486 + 0.0120 cos 2# (43) 

The r e su l t s  of these computations are shown i n  f igures  9 and 10. The 
angles 8 and @ 
angles, and they belong t o  the  coordinate system of equations (1) when 
k2 = 1 and k12 = 0. 

i n  equations (40) through (42) are t rue  spherical  polar 

The body and shock-wave comparison i s  very close.  The pressures, on 
the  other hand, disagree by as much as 6.3 percent.  A t  least a port ion 
of t h i s  difference can be accounted f o r  if one r e c a l l s  t h a t  t he  problem 
i s  i n  fect  highly nonlinear, and t h a t  the method of reference 5 i s  based 
on l inear iz ing assumptions. 

A Limiting Case 

When the value of b/a i s  taken t o  be unity, the  shock wave and 
A calculat ion was  made f o r  such a 

8, = 28.58g0, M = 8.096, and y = 1.403, and using several  
resul t ing body are  c i r cu la r  cones. 
case using 
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d i f f e ren t  values f o r  ne. The resu l t s  are shown i n  the  tab le  below. 
This same case has been tabulated. i n  reference 4, and f o r  purposes of 
comparison the  reference 4 results are a l so  given i n  the  table .  Note 
t h a t  the  r e s u l t s  of the two methods of computation a re  nearly iden t i ca l  
f o r  the smaller values of AB. 

DISCUSSION OF RESULTS 

In  the  foregoing section the  effect  on body shape and surface pressure 
due t o  changing the s ize  of the increment A3 w a s  studied. It was found 
t h a t  t h e  numerical process i s  convergent i n  the  cases studied. No numer- 
i c a l  d i f f i c u l t i e s  were encountered i n  obtaining these r e su l t s .  The same 
computing program could not be used for  cases where the  resu l t ing  body w a s  
markedly d i f f e ren t  f r o m  a coordinate cone. Such s i tua t ions  arise when the  
r a t i o  b/a 
smaller than abvui 4. Zi the l z t t e r  r i s e i  i f  t.he r a t i o  b/a a t  the  
shock wave i s  not too far from unity, then the  l o w  Mach number cases c m  
be computed with no d i f f i c - d t y .  Tnere are apparently two fac tors  which 
contribute t o  these problems. One i s  the  i n a b i l i t y  t o  come su f f i c i en t ly  
close t o  the  body over the fu l l  range 
other  i s  the  more involved matter associated with the  entropy layer  and 
s ingu la r i t i e s  on the  surface of the  body. 

a t  the  shock i s  smaller than about 0.3, o r  f o r  Mach numbers 

0 5 @ 5 90' i n  such cases, and the  

Extensions of t h i s  work would c lear ly  involve modifying the  computing 
process t o  minimize the  d i f f i c u l t i e s  discussed i n  the foregoing paragraph. 
Changes t o  include angles of a t tack  might also be included. It i s  l i k e l y  
t h a t  considerable information re la t ive  t o  t h e  entropy layer  and s ingular i -  
t i e s  on the  body could be obtained from examination o f  the  region near the  
body more closely than i s  possible with the  present procedure. 

Ames Research Center 
National Aeronautics and. Space Administration 

Moffett Field, Calif.,  Apr. 20, 1959 
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